(Sheldrick, 1993). Molecular graphics: *ORTEX2*.1 (McArdle, 1994). Software used to prepare material for publication: *PARST* (Nardelli, 1983).

The authors thank Dr H. Zeugner, Kali-Chemie Pharma GmbH, Hannover, Germany, for providing a sample of the title compound.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1255). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Blaton, N. M., Peeters, O. M., Meurisse, R. L. & De Ranter, C. J. (1996). Acta Cryst. C52, 691–692.

McArdle, P. (1994). J. Appl. Cryst. 27, 438-439.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.

Nardelli, M. (1983). Comput. Chem. 7, 95-98.

- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. University of Göttingen, Germany.
- Stoe & Cie (1988). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1992a). EMPIR. Empirical Absorption Correction Program. Version 1.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1992b). *REDU*4. *Data Reduction Program*. Version 7.03. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1996). C52, 2795-2797

(-)-(*R*)-*N*-[(3,4-Dihydro-2*H*-1-benzopyran-2-yl)methyl]-*N*'-(1,4,5,6-tetrahydro-2-pyrimidyl)-1,3-propanediaminium Dibromide[†]

OSWALD M. PEETERS, NORBERT M. BLATON AND CAMIEL J. DE RANTER

Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium. E-mail: maurice.peeters@farm.kuleuven. ac.be

(Received 20 May 1996; accepted 30 May 1996)

Abstract

The crystal structure and absolute configuration of the (-)-enantiomer of the title compound, $C_{17}H_{28}N_4O^{2+}$.-2Br⁻, have been determined. The absolute configuration is *R*. The bridging chain between the ring moieties is folded with a -sc/ap/sc/sc/ap/-sc conformation. N— H...Br hydrogen bonds form endless chains in the **b** direction.

Comment

Alniditan (R91274), the hydrochloride form of the title compound, (I), interacts primarily with 5-HT_{1D} -serotonergic binding sites and at slightly higher concentrations with the closely related 5-HT_{1A} -serotonergic binding sites. Intravenous and subcutaneous injection of alniditan in patients experiencing moderate to severe migraine pain resulted in a significantly higher response rate than placebo, and this response rate increased with increasing doses.

The crystal structure determination of the title compound was undertaken to obtain the absolute configuration of alniditan. Compared to the values given by Allen et al. (1987) the bond lengths are normal. The bond angles do not show unexpected features. The double protonation occurs at the basic N atoms N12 and N18 (or N22). This agrees with the less basic properties of N16 through delocalization of its lone pair. The dihydropyran ring adopts a half-chair conformation with a pseudo twofold axis intersecting the C2-C3 bond. The tetrahydropyrimidine ring has an envelope conformation with the flap at C20. The bridging chain between the ring moieties is folded and has a -sclap/sc/sclap/-scconformation. The gauche conformation between O1 and N12 is stabilized by an intramolecular hydrogen bond. The packing of the molecules results mainly from N-H···Br intermolecular hydrogen bonds which form endless chains in the **b** direction.

Fig. 1. Perspective view of the title compound with atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

[†] Internal code of the Janssen Research Foundation: R96692.

$C_{17}H_{28}N_4O^{2+}.2Br^{-}$

Experimental

Crystals of the title compound (Janssen Research Foundation) were grown from a mixture of methanol/ethyl acetate by slow evaporation at room temperature.

Crystal	data
---------	------

$C_{17}H_{28}N_4O^{2+}.2Br^{-}$	Cu $K\alpha$ radiation
$M_r = 464.26$	$\lambda = 1.54184 \text{ Å}$
Monoclinic	Cell parameters from 26
P21	reflections
a = 7.7033 (2) Å	$\theta = 20-25^{\circ}$
b = 8.4943(2) Å	$\mu = 5.210 \text{ mm}^{-1}$
c = 15.4169(5) Å	T = 293 K
$\beta = 96.201(5)^{\circ}$	Plate
$V = 1002.89(5) \text{ Å}^3$	$0.38 \times 0.30 \times 0.05$ mm
Z = 2	Colourless
$D_x = 1.537 \text{ Mg m}^{-3}$	
$D_m = 1.540 \text{ Mg m}^{-3}$	
D_m measured by flotation in	
CCl ₄ /n-heptane	
Data collection	
Siemens P4 four-circle	$R_{\rm int} = 0.0398$

diffractometer	$\theta_{\rm max} = 57.16^{\circ}$
$\omega/2\theta$ scans	$h = -7 \rightarrow 8$
Absorption correction:	$k = -9 \rightarrow 9$
ψ scans (XEMP; Siemens,	$l = -16 \rightarrow 16$
1989)	3 standard reflections
$T_{\min} = 0.21, T_{\max} = 0.77$	monitored every 100
5354 measured reflections	reflections
2710 independent reflections	intensity decay: <3.0%
2700 observed reflections	
$[I > 2.0\sigma(I)]$	

Refinement

Refinement on F^2	Extinction correction:
$R[F^2 > 2\sigma(F^2)] = 0.0333$	SHELXL93 (Sheldrick,
$wR(F^2) = 0.0842$	1993)
S = 1.085	Extinction coefficient:
2710 reflections	0.0055 (3)
218 parameters	Atomic scattering factors
H-atom parameters not	from International Tables
refined	for X-ray Crystallography
$w = 1/[\sigma^2(F_o^2) + (0.0311P)^2]$	(1974, Vol. IV) Tables
+ 0.8398 <i>P</i>]	2.2B and 2.3.1
where $P = (F_o^2 + 2F_c^2)/3$	Absolute configuration:
$(\Delta/\sigma)_{\rm max} = -0.001$	Flack (1983)
$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$	Flack parameter = -0.01 (3)
$\Delta \rho_{\rm min} = -0.42 \ {\rm e} \ {\rm \AA}^{-3}$	-

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$	
--	--

	x	v	c	U_{eq}
Brl	-0.19971 (6)	0.97130 (5)	0.99501 (3)	0.0580 (2)
Br2	0.2397 (1)	1.74325 (8)	1.29074 (6)	().()994 (4)
01	0.2263 (6)	0.798() (4)	0.8187 (2)	0.062 (1)
C2	0.1918 (6)	0.9613 (6)	0.8336 (3)	0.055 (2)
C3	0.2608 (9)	1.0651 (7)	0.7640 (4)	0.065 (2)
C4	0.1787 (9)	1.0194 (7)	0.6745 (4)	0.072 (2)
C5	0.1663 (7)	0.8446 (7)	0.6628 (4)	0.058 (2)

76	0.1884 (7)	().7444 (7)	0.7347 (3)	0.055 (2)
7	0.1805 (8)	0.5811 (7)	0.7257 (4)	0.064 (2)
78	0.1439 (9)	0.5172 (8)	0.6423 (5)	0.078 (3)
-9	0.1226 (9)	0.6126 (9)	0.5711 (5)	0.078 (3)
210	0.1348 (7)	0.7757 (8)	0.5809 (4)	0.067 (2)
211	0.2770 (7)	0.9957 (7)	0.9227 (3)	0.058 (2)
112	0.2198 (6)	0.8826 (5)	0.9879 (3)	0.052 (2)
213	0.3341 (8)	0.8739 (6)	1.0728 (4)	0.059 (2)
214	0.3640 (7)	1.0328 (6)	1.1172 (4)	0.057 (2)
215	0.2028 (7)	1.1083 (6)	1.1452 (4)	0.051 (2)
N16	0.2374 (6)	1.2499 (5)	1.1974 (3)	0.051 (1)
217	0.2990 (6)	1.2479 (6)	1.2808 (3)	0.045 (2)
N18	0.3158 (6)	1.1126 (5)	1.3250 (3)	0.055 (2)
219	0.3779 (8)	1.1042 (7)	1.4159 (4)	0.062 (2)
20	0.3435 (8)	1.2537 (8)	1.4617 (4)	0.068 (2)
21	0.4033 (7)	1.3934 (6)	1.4117 (3)	0.057 (2)
N22	().3396 (6)	1.3813 (5)	1.3208 (3)	0.057 (2)

Table 2. Selected geometric parameters (Å, °)

O1C2 O1C6 C2C3 C2C11 C3C4 C4C5 C5C6	1.436 (6) 1.374 (6) 1.528 (8) 1.486 (7) 1.505 (8) 1.497 (8) 1.303 (8)	C11—N12 N12—C13 C13—C14 C14—C15 C15—N16 N16—C17 C17	1.492 (7) 1.498 (7) 1.519 (8) 1.502 (8) 1.455 (7) 1.322 (6)
C5-C10 C6-C7 C7-C8 C8-C9 C9-C10	1.395 (8) 1.395 (8) 1.395 (8) 1.397 (9) 1.36 (1)	C17—N22 N18—C19 C19—C20 C20—C21 C21—N22	1.312 (6) 1.434 (7) 1.490 (9) 1.514 (8) 1.438 (7)
$\begin{array}{c} C2-O1C6\\ O1C2C11\\ O1C2C3\\ C3C2C11\\ C2C3C4\\ C3C4C5 \end{array}$	$\begin{array}{c} 116.5 (4) \\ 105.5 (4) \\ 111.1 (4) \\ 112.5 (4) \\ 110.6 (5) \\ 112.4 (5) \end{array}$	C5-C10-C9 C2-C11-N12 C11-N12-C13 N12-C13-C14 C13-C14-C15 C14-C15-N16	121.3 (6) 111.3 (4) 115.6 (4) 113.3 (4) 114.8 (5) 113.9 (4)
C4—C5—C10 C4—C5—C6 C6—C5—C10 O1—C6—C5 C5—C6—C7 C6—C7 C6—C7—C8	122.0 (5) 120.6 (5) 117.4 (5) 122.9 (5) 121.9 (5) 115.2 (5) 118.7 (5)	C15N16C17 N16C17N22 N16C17N18 N18C17N22 C17N18C19 N18C19C20 C19C20 C19C20	123.4 (4) 119.3 (4) 120.9 (4) 123.1 (4) 111.3 (5) 110.3 (5)
C7-C8-C9 C8-C9-C10 O1-C2-C11-N12 C2-C11-N12-C13 C11-N12-C13-C14	120.4 (6) 120.2 (6) -53.2 (5) 162.2 (4) 54.5 (6)	C20-C21-N22 C17-N22-C21 N12-C13-C14-C15 C13-C14-C15-N16 C14-C15-N16-C17	$\begin{array}{c} 110.4 (4) \\ 124.1 (4) \\ 64.3 (6) \\ 172.5 (4) \\ -77.1 (6) \end{array}$

Table 3. Hydrogen-bonding geometry (Å, °)

D — $H \cdot \cdot \cdot A$	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	$D = \mathbf{H} \cdot \cdot \cdot \mathbf{A}$
N12—H12A···O1	2.25	2.712 (6)	111
N12—H12A···Br1'	2.75	3.508 (4)	142
N12—H12B···Br1	2.45	3.332 (4)	167
N16—H16···Br1"	2.80	3.497 (4)	139
N18—H18· · ·Br2 [™]	2.44	3.225 (4)	153
N22—H22···Br2	2.44	3.192 (4)	146
Symmetry codes: (i) $-x, y - \frac{1}{2}, 2-z$; (ii) $-x, \frac{1}{2}+y, 2-z$; (iii) $x, y - 1, z$.			

The structure was solved by a combination of Patterson and direct methods on the difference structure. Refinement was performed with full-matrix least-squares on F^2 for all reflections. H atoms were calculated at geometrical positions and allowed to ride on their parent atoms.

Data collection: XSCANS (Fait, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: DIRDIF (Beurskens et al., 1992). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEX2.1b (McArdle, 1994). Software used to prepare material for publication: PARST (Nardelli, 1983).

The authors thank Dr Jan Tollenaere of Janssen Research Foundation (Beerse, Belgium) for providing a sample of the title compound.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1252). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System.* Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Fait, J. (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- McArdle, P. (1994). J. Appl. Cryst. 27, 438-439.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1989). XEMP. Empirical Absorption Correction Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1996). C52, 2797-2800

Two Photoproducts Derived from 11,12-Dibenzoyl-9,10-dihydro-9,10-dimethoxy-9,10ethenoanthracene

S. Ajaya Kumar,^{*a*} Thomas Mathew,^{*a*} Suresh Das,^{*a*} Nigam P. Rath^{*b*} and M. V. George^c

^aPhotochemistry Research Unit, Regional Research Laboratory (CSIR), Trivandrum 695019, India, ^bDepartment of Chemistry, University of Missouri–St. Louis, 8001 Natural Bridge Road, St. Louis, MO 63121, USA, and ^cRadiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA. E-mail: nigam_rath@umsl.edu

(Received 18 July 1994; accepted 22 April 1996)

Abstract

Photolysis of 11,12-dibenzoyl-9,10-dihydro-9,10-dimethoxy-9,10-ethenoanthracene, (1), in a mixture of benzene and methanol gives the dibenzofuranopentalene (3), whereas irradiation of (1) in a mixture of benzene and aqueous methanol gives a mixture of the dibenzopentalenone (4) and the dibenzofuranopentalene derivative (5). The structures of two of these photoproducts, namely, the methanol solvate of 8c-benzoyl-8b,8c-dihydro-4b,8b-dimethoxy-4bH-dibenzo[a,f]furano[3,4,5-c,d]pentalene, C₃₂H₂₄O₄.0.5CH₃OH, (3), and 8cbenzoyl-8b,8c,8d,9-tetrahydro-8b,8d,9-trimethoxy-4bHdibenzo[*a*,*f*]furano[3,4,5-*c*,*d*]pentalene, C₃₃H₂₈O₅, (5), have been determined by X-ray diffraction methods.

Comment

It has been reported previously that the photolysis of the dibenzobarrelene (1) in benzene, methanol or acetone leads to the dibenzosemibullvalene derivative (2) (Murty, Pratapan, Kumar, Das & George, 1985). In a recent study, it was shown that the photolysis of (1) gives rise to different products depending on the reaction conditions (Kumar, Asokan, Mathew, Ramaiah, Das, Rath & George, 1996). Thus, photolysis of (1) in a mixture of methanol and benzene (4:1) gives a 90% yield of (3) whereas irradiation of (1) in aqueous methanol gives a mixture of (4) (40%) and (5) (34%).

The present study was undertaken in order to confirm the structures of compounds (3) and (5). Compound (3) may arise through the opening of the cyclopropane ring in (2) followed by ring closure analogous to the phototransformations of 9-aryl-substituted dibenzobarrelenes (Pratapan, Ashok, Gopidas, Rath, Das & George, 1990). Both (4) and (5) may arise through an ionic cleavage of the cyclopropane ring in (2) followed by the loss of a methyl group in the case of (4) and the addition of methanol in the case of (5).

Both (3) and (5) contain a dibenzopentalenofuran skeleton, incorporating a pentacyclic fused-ring core containing two six- and three five-membered rings, which has the shape of a shallow bowl in each case (Figs. 1 and 2). In the case of (3), the methoxy groups at the C4b and C8b positions and the benzoyl group at the C8c position lie on the outer side of the bowl whereas in (5), the benzoyl group at C8c and the methoxy substituent at C4b are *cis* with respect to one another. The 'butterfly angles' formed by the fusion of the two indane systems are 106.5 and 112.3° for compounds (3) and (5), respectively.

Compound (3) crystallizes as a hemisolvate with half a molecule of methanol per molecule. The solvent molecule exhibits large anisotropic thermal motion owing to disorder which could not be resolved. The occupancy factor was refined for the solvent molecule.